Strength of Materials 1010101121010110028 Field of study Profile of study (Drak) Year /Semester Civil Engineering First-cycle Studies Subject of read in: Polish Year /Semester Dycke of study: - Subject of freed in: Polish Course (compulsory, elective) obligatory Dycke of study: - Form of study (ull-time,part-time) Course (compulsory, elective) obligatory Dycke of study: - Form of study (ull-time,part-time) 0 Status of the course in the study program (Basic, major, other) (brak) (university-wide, from another field) 0 Caucation areas and fields of sciences 9 100% 9 100% Responsible for subject / lecturer: drin. Zbigniew Pozorski email: zbigniew pozorski (gput,poznan,pl tel. 61 665 20 96 9 100% Prerequisites in terms of knowledge, skills and social competencies: Theoretical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Theoretical work well 6 of KRK. 2 Skills Mathematics: skills of calculusio, geometry, planimetry, trigonometry - level 6 of KRK. Theoretical mechanics: two biglit of astudy to use hand integral so functions, the ability to use maint: calculus- evel 6 of KRK. Theoretical mechanics: two evel 6 of KRK. Theoretical mechanics: theolity to use the balance equations to determine the reaccions and		STUDY MODULE D	ESCRIPTION FORM			
Civil Engineering First-cycle Studies (general academic, practical) (brak) 1/2 Subject offered in: Polish Course (computery, elective) obligatory Course (computery, elective) obligatory System of study (full-lime, part-lime) Form of study (full-lime, part-lime) No. of credits Subject offered in: First-cycle studies So fault No. of credits 9 Status of the course in the study program (Base, major, other) (brak) (university-wide, from another field) (brak) No. of credits Education areas and fields of science and att ECTS distribution (number and %) 9 100% 9 100% 9 100% 9 100% 9 100% 9 100% 9 100% 10% 10%	Name of the module/subject		Code			
Bit dispectative Subject offered in: Polish Course (compulsory, elective) obligatory Sycle of study: Form of study (full-time,part-time) No. of credits Secture: 45 Classes: 30 P Status of the course in the study program (Basic, major, other) (brak) (university-wide, from another field) No. of credits Education areas and fields of science and art ECTS distribution (number and %s) ECTS distribution (number and %s) Education areas and fields of sciences 9 100% 9 100% Technical sciences 9 100% 9 100% 9 100% Prerequisites in terms of knowledge, skills and social competencies: Image: sciences in terms of knowledge, skills and social competencies: Image: science in rod elements of a structure - level 6 of KRK. Physics at level 5 of KRK. Prerequisites in terms of knowledge, skills and social competencies: Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, fingnometry - level 6 of KRK. Physics: Itever 16 of KRK. Physics: at level 5 of KRK. Physics: at level 5 of KRK. Physics: ative 10 capy the principles of Newton - level 5 of KRK. Physic	Field of study	First such Otudias	(general academic, practical)		
- Polish obligatory Syde of study: Form of study (full-time.part-time) Form of study (full-time.part-time) Status of the course in the study program (Basic, major, other) full-time No. of oredits GetUrte: 45 Classes: 30 Laboratory: 15 Project/seminars: 30 9 Education areas and fields of science and at (brak) (brak) ECTS distribution (number and %) Education areas and fields of science and at ECTS distribution (number and %) 9 100% Education areas and fields of sciences 9 100% 9 100% Responsible for subject / lecturer: drin2. Zbigniew Pozorski 9 100% 9 100% Responsible for subject / lecturer: drin2. Sbigniew Pozorski Budownictwa in Zbigniew for adviska U. Piotrows 5, 60-965 Poznan ECTS distribution (number and %) 9 100% Prerequisites in terms of knowledge, skills and social competencies: Internal forces in rod elements of a structure. Jevel 6 of KRK. Physics at live of a KRK. Physics at live of a KRK. Physics: ability to use the students canowick in groups. The student is able to participate in the soci		-irst-cycle Studies	. ,			
First-cycle studies full-time No. of brows e.ecture: 45 Classes: 30 Laboratory: 15 Project/seminars: 30 9 Status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) 9 Education areas and fields of science and art (brak) (brak) (brak) Education areas and fields of science and art ECTS distribution (number and %) 9 100% Sechnical sciences 9 100% 9 100% Responsible for subject / lecturer: it. Zbigniaw Pozorski 9 100% Responsible for subject / lecturer: it. Sciences 9 100% It. Stops or sciences 9 100% 9 100% Prerequisites in terms of knowledge, skills and social competencies: It. Knowledge Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics a tilve 6 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals	Elective path/specialty	-				
w.o. of hours No. of credits ecture: 45 Classes: 30 Laboratory: 15 Project/seminars: 30 9 status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) cducation areas and fields of science and art ECTS distribution (number and %) 9 100% stetchnical sciences 9 100% 9 100% rechnical sciences 9 100% 9 100% Responsible for subject / lecturer: dr in2. Zbigniew Pozorski 9 100% 9 100% referencies Image: Sciences 9 100% 9 100% Responsible for subject / lecturer: dr in2. Zbigniew Pozorski 9 100% 9 100% Responsible for subject / lecturer: dr in2. Zbigniew Cozorski Buttowns in Raymieni Srodowiska 9 100% 9 100% Pereequisites in terms of knowledge, skills and social competencies: Image: Science in science i	Cycle of study:		Form of study (full-time,part-time))		
ecture: 45 Classes: 30 Laboratory: 15 Project/seminars: 30 9 status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) ducation areas and fields of science and art (brak) (brak) ECTS distribution (number and %) status of the course in the study program (Basic, major, other) (university-wide, from another field) 9 100% status of the course and fields of science and art Fechnical sciences 9 100% 9 100% status of the course in the study program (Basic, major, and the course) Image: Science and and the science and the science and science and and the science and calculas), geometry, planimetry, trigonometry - level 6 of KRK. 1 Knowledge Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. 2 Skills Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, science and	First-o	cycle studies	full-time			
Status of the course in the study program (Basic, major, other) (university-wide, from another field) (brak) (brak) Education areas and fields of science and at End %) Status of the course in the study program (Basic, major, other) (university-wide, from another field) Education areas and fields of science and at End %) Status of the course 9 Technical sciences 9 Technical sciences 9 Technical sciences 9 Maine Sciences 9 Maine Sciences 9 Budownictwa i Inzynierii Środowiska U. Piotrowo 5, 60-965 Poznań Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: the oblight other with and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 2 Skills Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. 3 Social competencies Students can work in groups. The student is able to participate in the social	No. of hours					
(brak) (brak) Education areas and fields of science and art CTS distribution (number and %) Exechnical sciences 9 100% Technical sciences 9 100% Responsible for subject / lecturer: 9 100% dr inž. Zbigniew Pozorski email: zbigniew.pozorski@put.poznan.pl tel. 61 665 20 96 9 Budownictwa i Inžynierii Srodowiska ul. Piotrowo 5, 60-965 Poznań 9 Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge 1 Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 2 Skills Mathematics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Student knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics o		=ab 0. a.to. j.			-	
Education areas and fields of science and art ECTS distribution (number and %) sechnical sciences 9 100% Technical sciences 9 100% Responsible for subject / lecturer: 9 100% dr in2, Zbigniew Pozorski 9 100% Budownictwa i Inzynierii Šrodowiska 9 100% ul. Piotrowo 5, 60-965 Poznań 9 100% Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. Physics: ability to apply the principles of Newton - level 5 of KRK. Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. 3 Social competencies Students can work in groups. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials Student knows basic terms of strength	Status of the course in the st					
Rechnical sciences 9 100% Responsible for subject / lecturer: dr in2. Zbigniew Pozorski 9 100% Responsible for subject / lecturer: dr in2. Zbigniew Pozorski email: zbigniew.pozorski@put.poznan.pl tel. 61 665 20 96 Budownictwa i Inzynierii Środowiska ul. Piotrowo 5, 60-965 Poznań Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Asymptions and objectives of the course: Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the corses: esticion, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 3 Student knows basis of experimental methods i	Education areas and fields of	· · · /		(DI	ECTS distribution (number	
Responsible for subject / lecturer: dr in2. Zbigniew Pozorski email: zbigniew.pozorski@put.poznan.pl tel. 61 665 20 96 Budownictwa i Inzynierii Środowiska ul. Piotrowo 5, 60-965 Poznań Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge 1 Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Study outcomes and reference to the educational results for a field of study Coupier the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials: Study outcomes and reference	technical sciences					
drint: Zbigniew.pozorski email: zbigniew.pozorski Budownictwa Interview 5, 60-965 Poznań Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge 1 Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Study outcomes and reference to the educational results for a field of study Knowledge I. Student knows basic terms of strength of materials: strengs, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basic terms of strength of materials: strength hypothesis for inerar theory (obtained at lectures) - [K_W04, K_W05]	Technical s	ciences			9 100%	
Prerequisites in terms of knowledge, skills and social competencies: 1 Knowledge 1 Knowledge 1 Mathematics: algebra (including matrix calculus), mathematical analysis (including differential and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 2 Skills Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	email: zbigniew.pozors tel. 61 665 20 96 Budownictwa i Inżynie	ki@put.poznan.pl ïi Środowiska				
Image: Solution of the structure and mechanics of the course: Acquire the knowledge and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK. Physics at level 5 of KRK. Theoretical mechanics: knowledge of the equilibrium equations and internal forces in rod elements of a structure - level 6 of KRK. Mathematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. Physics: ability to apply the principles of Newton - level 5 of KRK. Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. Social Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of the structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	,		d social competencies			
elements of a structure - level 6 of KRK. 2 Skills Ashematics: skills of calculation of derivatives and integrals of functions, the ability to use matrix calculus - level 6 of KRK. Physics: ability to apply the principles of Newton - level 5 of KRK. Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. 3 Social competencies Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	1 Knowledge	and integral calculus), geometry, planimetry, trigonometry - level 6 of KRK.				
2 Skills matrix calculus - level 6 of KRK. Physics: ability to apply the principles of Newton - level 5 of KRK. Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. 3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]				s and	d internal forces in rod	
Theoretical mechanics: the ability to use the balance equations to determine the reactions and internal forces in statically determined bar systems - level 6 of KRK. Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	2 Skills	matrix calculus - level 6 of KRK.	- -		ctions, the ability to use	
3 Social competencies Students can work in groups. The student is able to participate in the social life of the university. The student follows the rules of ethics. Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of he structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows constitutive and geometrical relations, strength hypothesis for linear theory (obtained at lectures) - [K_W04, K_W05] 3. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]		Theoretical mechanics: the abili	ty to use the balance equations	s to c		
Assumptions and objectives of the course: Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of the structure and mechanics of materials Study outcomes and reference to the educational results for a field of study Knowledge: 1. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross- section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows constitutive and geometrical relations, strength hypothesis for linear theory (obtained at lectures) - K_W04, K_W05] 3. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	3	Students can work in groups. The student is able to participate in the social life of the				
Acquire the knowledge, skills and competence in solving problems of stress, strain and displacement in the rod elements of the structure and mechanics of materials	•					
 Knowledge: I. Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows constitutive and geometrical relations, strength hypothesis for linear theory (obtained at lectures) - K_W04, K_W05] 3. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05] 	Acquire the knowledge, s	kills and competence in solving probl	ems of stress, strain and displa	acem	nent in the rod elements of	
 Student knows basic terms of strength of materials: stress, strain, displacement, axis of inertia and main axes of the cross-section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] Student knows constitutive and geometrical relations, strength hypothesis for linear theory (obtained at lectures) - K_W04, K_W05] Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05] 	Study out	comes and reference to the	educational results for	r a f	field of study	
section, isotropy, homogeneity (obtained at lectures) - [K_W04, K_W05] 2. Student knows constitutive and geometrical relations, strength hypothesis for linear theory (obtained at lectures) - K_W04, K_W05] 3. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]	Knowledge:					
K_W04, K_W05] 3. Student knows basis of experimental methods in strength of materials (obtained at lectures and laboratory classes) - K_W04, K_W05]				ertia	and main axes of the cross-	
K_W04, K_W05]	2. Student knows constitu [K_W04, K_W05]	tive and geometrical relations, streng	gth hypothesis for linear theory	(obt	ained at lectures) -	
Skills:	[K_W04, K_W05]	experimental methods in strength of	f materials (obtained at lectures	s and	d laboratory classes) -	
	Skills:					

1. Student is able to determine the stress state in the points of the rod cross-section in the basic cases of action of internal forces (obtained at classes and project classes) - [K_U04]

2. Student is able to determine displacements of the beam structure using equilibrium differential equations (obtained at lectures and classes) - [K_U04]

3. Student is able to determine the critical load for basic cases of the axially loaded column (obtained at classes and project classes) - $[K_U11]$

4. Student is able to perform simple laboratory experiments leading to the designation of basic material parameters and strength of building materials (obtained at laboratory classes) - $[K_U13]$

Social competencies:

1. Student understands the need for learning; can inspire and organize the process of learning of other people (obtained at lectures and classes) - [K_K03]

2. Student is able to cooperate in a group accepting different roles in the group (obtained at laboratory and project classes) - $[K_K01]$

3. Student is responsible for safety of the own work and work of the team (obtained at laboratory classes) - [K_K05]

4. Student is able to present the results of his own work (obtained at laboratory and project classes) - [K_K09]

Assessment methods of study outcomes

Lectures

Written exam (duration 120 min.) on the date specified at the beginning of the semester (the effect K_W04, K_W05, K_U04, K_U11, K_K03).

Classes are passed in the case of positive marks (at least 3.0) of 2 test (duration of each 90 min.). The terms of tests are given at the beginning of the semester (the effect K_W04, K_W05, K_U04, K_U11, K_K03).

Laboratory classes are passed in the case of positive marks (at least 3,0) of all reports of laboratory exercises and a minimum of 1 test. The report shall be defending by the team executing the laboratory exercise (oral or written form) (effect K_U13, K_K09, K_K05, K_K01).

Project classes are passed in the case of positive marks (at least 3,0) of all project tasks. The project tasks should be individually defended (oral or written form) (effect K_U04, K_U11, K_K01, K_K09).

Scale of the evaluation:

excellent (5,0)

good (4,5)

average (4,0)

passing (3,5)

failed (2,0)

near failed (3,0)

Course description

Idealization of structural models: 1D (rod, truss, beam, column, frame, arch, grid), 2D (plate, slab, shell), 3D (block). Calculation of the effects of actions. The geometrical characteristics of plane figures. Boundary Value Problem of linear elasticity. Internal forces in statically determined rod structures. State of stress and strain in special cases: axial tension, pure bending, bending with shear force, skew bending, eccentric tension, torsion. Displacements of beams. Elastic energy. Constitutive relations for materials. Plasticity. Measures of equivalent stress. Load capacity of beams and columns. Stability of a column. Rheological phenomena. Stress concentration. Fatigue. Elements of mechanics of thin walled rods. Experimental methods.

Basic bibliography:

1. A. Gawęcki, Mechanika materiałów i konstrukcji prętowych, tomy 1 i 2, Wyd. Pol. Pozn. 19982.

2. A. Garstecki, M. Dębiński, Wytrzymałość materiałów, Podręcznik internetowy,

www.ikb.poznan.pl.http://www.ikb.poznan.pl/almamater/wyklady/wytrzymalosc_materialow_04-05/

3. A. Boruszak, R. Sygulski, K. Wrześniowski, Wytrzymałość materiałów, doświadczalne metody badań, PWN, 1984.

Additional bibliography:

1. S. Piechnik, Wytrzymałość materiałów, Politechnika Krakowska, Kraków 1999

2. A. Jakubowicz, Z. Orłoś, Wytrzymałość Materiałów, tomy 1 i 2, WNT, Warszawa, 1999 i 1997

3. Z. Cywiński, Mechanika budowli w zadaniach. Układy statycznie wyznaczalne, PWN Warszawa 1999

4. S. Timoshenko, Strength of Materials, Krieger Pub Co, 3rd edition, 1983.

5. J. Grabowski, A. Iwanczewska, Zbiór zadań z wytrzymałości materiałów, Oficyna Wydawnicza Politechniki Warszawskiej, 1994.

Result of average student's workload

Activity	Time (working hours)

Total workload Contact hours	270 128	9
Source of workload	hours	ECTS
Student's wo	rkload	
12. Participation in the final exam (contact hours)	3	
11. Exercises before the final exam (self-study)	12	
10. Exercises before projects defense (self-study)	15	
9. Exercises before classes tests (self-study)	25	
8. Participation in the consultations (contact hours)	5	
7. Completion (at home) project exercises (self-study)	60	
6. Reports from laboratory experiments (self-study)	15	
5. Preparations for laboratory classes (self-study)		15
4. Participation in the project classes (contact hours, practical)	30	
3. Participation in the laboratory classes (contact hours, practical)		15
2. Participation in the classes (contact hours)	30	
 Participation in the lectures (contact hours) 	45	